Robot Design

Michael Hartwig <u>kcFLLref@gmail.com</u>

Agenda

- 2018 KC Region robot scores
- Design Factors and Process
- Robot & Attachment Design
- Resources
- Questions

2018 Results

 Statistics from qualifying tournaments & the regional championship

Design Factors

- Mindstorms are not high precision devices
 - Sensor accuracy & tolerances
 - Motor & other gear train slippage
 - Limitations of LEGO construction
- 2.5 minutes is a short period of time
 - Time spent in Home or the Launch Area, driving to a mission, or returning to Home is time not scoring
- Tables & models are not all the same
- Self-aligning vs. jigs or manual line-up
 - How *exactly,* repeatably can a robot be set up?
 - Wall following
 - Sensors vs. odometry

Movement Inaccuracy

- Experiment my teams did a couple of years ago
- Kids marked on floor next to wall so they could put the robot down in the "same" place each time.
- Program was move, turn, move. Total distance less than a meter
- Used an attachment to hold a dry erase marker. Robot stopped & we marked the floor.
- Ran 10 times.
- Arrow shows only spot with 2 dots in the same place.

Guiding the Team's Design

- Start simple
 - Don't let kids go beyond their capabilities
 - They need to understand what they're creating & how it works
- Plan before building & programming
 - Don't let them just start; they need to think (and hopefully document) first
- Kids need to experiment
 - Formalize, and record results
 - Don't allow "guess and retry"
 - No assumptions test & compare variations
- Design for failure
 - Robots can succeed despite inaccuracies and on-field problems, if appropriately designed and programmed.

Coaching

- Main job is to inspire
- Create an environment for success
 - Help the kids learn the rules
 - Need to solve the actual problems presented by the game
 - Rely on themselves
 - Make the game environment realistic
 - Timed practices, with scoring
 - Combine with other teams & have practice sessions
 - Attend rumbles if at all possible; especially rookie teams
- Help team set realistic goals
 - They'll feel more accomplishment reaching small goals then failing at big ones. Steer them towards starting with a small # of missions as a goal; the team can always add more if they finish their original goal.

How complicated does a robot need to be?

2018-2019 KC Region robot types

	Region Totals		ONW	SLMS	BMS	WHS	LHS	Champs
Complicated	1.7%	3	1	0	1	0	1	3
Custom	34.1%	61	4	17	13	13	14	17
Enhanced Kit	23.5%	42	7	5	8	9	13	14
Kitbot	40.2%	72	7	17	19	18	11	12
NXT	0.6%	1	1	0	0	0	0	0
% Kit-like		63.7%	70.0%	56.4%	65.9%	67.5%	61.5%	56.5%
% Kit		40.2%	35.0%	43.6%	46.3%	45.0%	28.2%	26.1%

Robots – Kitbots & mods

Robots - Custom

Robots -- Complicated

Robots – Quick-change attachments

Robots – Passive attachments

Robots – Table Organization

Construction

- Build solid robots: Don't rely on single pegs to join beams use "L" beams to join angles or short beams to splice 2 long beams
- I love the "2M Friction Pin with Cross Hole" pins for attachments. They don't come out and therefore don't have to be removed before putting on the next attachment.
- Align & position sensors correctly
 - Color / light not too close or too far from mat; completely perpendicular.
 - Touch sensors position or build so triggering doesn't twist the robot
 - Ultrasonic make sure they're below the top of the surface being detected, and perpendicular
 - Gyro mount horizontally.
- Team needs to check robot connections regularly make sure it's staying together. Should be part of their post- and pre-match checklists.
- Consider the robot's center of gravity when adding attachments

Resources

- FLL web site: <u>https://www.firstinspires.org/resource-library/fll/challenge-and-resources</u>
- FLL First steps: <u>https://info.firstinspires.org/fll-first-steps-request</u>
- KC FIRST FLL portal: <u>https://www.kcfirst.org/first-lego-league-portal</u>
- FLL forums: <u>https://forums.usfirst.org/forum/general-discussions/first-programs/first-lego-league</u>
- EV3Lessons: <u>http://ev3lessons.com/</u>
- TechBrick: <u>https://techbrick.com/fll-resources/fll2019</u>
- Books:
 - FIRST LEGO League: The Unofficial Guide <u>https://www.amazon.com/First-LEGO-League-Unofficial-Guide/dp/1593271859</u>
 - Winning Design!: LEGO Mindstorms EV3 Design Patterns for Fun and Competition - <u>https://www.amazon.com/Winning-Design-MINDSTORMS-</u> <u>Patterns-</u> Competition/dp/1484221044/ref=pd_sim_14_6? encoding=UTF8&psc=1&ref

RID=57EBR5VZ9M3VCRDXHP4R

Questions?